

Geothermal Optimization: Planning and Design HAGeotherm01

Presented to:

KZF 18 September 2013

Presented by: Kathleen A. Dorsey, P. E.

Registered Provider

Haley & Aldrich Inc. is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with *AIA/CES* for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Haley & Aldrich Inc. 2012

Haley & Aldrich, Inc.

Course Description

This course will review and discuss in detail planning and design criteria necessary to support the proper application and optimization of geoexchange systems.

Learning Objectives

- 1. Understand the types of geoexchange systems and decision making criteria for choosing one over another.
- 2. Understand how to integrate geoexchange into the typical design process for a successful outcome.

- 3. Understand how complimentary HVAC building loads, site conditions and integrated system design can be used to optimize geoexchange systems.
- 4. Understand how *SmartSizing* impacts Life Cycle Cost benefit analysis for geoexchange systems.

Outline for Today

- Geothermal Geoexchange Basics
- Fitting Geothermal in Design Process
- Important Inputs
- Building and Geology Influences
- Case Studies

Audience Poll....

- What are your big questions relating to applying geothermal?
- Where do you think Geothermal is applicable?

The Earth – A Thermal Battery

Klamath Falls, Oregon

Source: treehugger.com

Ground Source Heat Pump Basics

HEATING

Heat source for ground source heat pumps to extract heat

COOLING

Heat sink for ground source heat pump to inject heat

Closed Systems

Open Systems

New Well Designs

Integrate into Foundations

In Slurry Wall

Loop Under Foundation Slab

Energy Piles and Slabs

Fitting in the D&C process

SmartSizing Geothermal Systems

What is *SmartSizing*?

- A process that explores multiple scenarios
- Find scenario that minimizes number of wells and achieves key benefits

Why *SmartSizing*?

- System cost 20% while providing 80% the same benefits
- Financial returns are greater
 - We minimize number of wells
 - We focus on benefits not "tons"

SmartSizing

Inputs to Get Started

- Desired Outcome/Goals
- Geology/Hydrogeology
- Building systems/CHP
- Load Profiles
- Building energy models
- Aesthetic Requirements
- Financial Goals
- Underground Structure/Features

Example of SmartSizing Impacts

Geothermal Well Scenarios 1, 2, and 3

Building Systems Matter

Geothermal Well Scenarios 1, 2, and 3

Benefits: Optimization Pays

Haley & Aldrich, Inc.

Go – No/Go

- 30% No-Go's
- Site Conditions/Regulatory
- Goals and Objectives
- Building Load Profiles
 - Heating/Cooling Centric
 - Non-district
- Space

Guais		
		-
2.		-
3		-

Gaala

"Go" influencers

- Existing Heating is Electric, Heating Oil, Steam or Propane
- Net zero; High Performance Buildings
- High Standard; Stretch Code
 - =>30% greater than ASHRAE 90.1 2007
- Historic Retrofit; Preservation
- Aesthetics
- Long term ownership (Life Cycle Cost)
- Residential; Mixed Use; Office

"Go" influencers

- Net zero; High Performance Buildings
- High Standard; Stretch Code
 - =>30% greater than ASHRAE 90.1 2007
- Historic Retrofit; Preservation
- Long term ownership (Life Cycle Cost)
- Residential; Mixed Use; Office

Design & Construction

Conceptual Design Site Evaluation; System Choices

Schematic Design Schematic Pricing

Rough ROI

Benefit Quantification

Design Development Pilot Thermal Test; Sizing and Modeling

Construction Documents Specification and Drawings; Final Pricing

Construction and Post Construction Commissioning, Training, Monitoring

Influence: SmartSizing > Field Test

Field Testing

- Thermal response testing
- Follow ASHRAE/IGSHPA
- Hydrogeologic testing
- Do early as possible
- Geology can vary in 500'
- "Check" in Plan Do Check Act
- For both open and closed

Figure 1: Temperature versus Time Data

Design/Build Delivery

Design/Build Area Vs. Capacity Pricing Tools

PHASE III - Construction

- Construction Documents
- Drilling Specification
- High Quality ASTM testing
- Commissioning and Verification
- Third Party Monitoring
- Drilling Water Management

Drilling the Installations

Audience Poll....

- Questions so far?
- Experiences related to what we've just covered?

CASE STUDIES

Load Profiles Matter

Combined System

High End Residential – Size on Bldg Loads

Haley & Aldrich, Inc.

Using Conventional Sizing Rules

Cooling Load:31 TonsHeating Load:263 MBH (....22 Tons equivalent)"Cooling Centric"

Rule of Thumb	Number of 400-ft Wells
2 tons/400-ft well	16
3 tons/400-ft well	10

...building is actually *heating-centric*

Haley & Aldrich, Inc.

Total Loads

Haley & Aldrich, Inc.

Actual Design: 21 Boreholes > 10-16

American University Washington D.C.

District – 100% Heating and Cooling

District – 50% Heating with Balanced Cooling

Advantage of SmartSizing & District

- 60 to 30 Boreholes
- Flexible Operation
- 90% of benefit@50% cost
- Single mobilization
- Avoid central plant costs
- Improves return on borefield investment

Geology Matters

Stanford University: District

- 75 retrofitted buildings
- Several thousand tons cooling load
- Initial closed loop design: 800 wells
- Geology really matters!

Stanford University

Stanford University

Owners Goals Matter

- Off-Grid/Self Sufficient
- Net Zero
- Utilizes "Green" Electricity
- Stretch code
- LEED points
- GHG reduction
- Historic preservation
- Reduce central plant growth
- Cache/Aesthetics

Yale Achieving Project Commitments

• Commitment to regulatory approval authority:

"Build building that is at least 12% more energy efficient than latest ASHRAE 90.1 base case"

Yale Achieving Project Commitments

Background:

- Very large residential
- Over 800 tons cooling load

- Significant building envelop and roof area/sq. ft.
- Many Energy Conservation Measures (ECMs) considered
- Sol'n: geothermal system consisting of 55 well installations within courtyards

Energy Efficiency Gains of ECMs

Compare "Apples to Apples"

Haley & Aldrich, Inc.

Wakefield High School: Save Space

Solution:

- Reduce redundancy
- Deeper Wells
- More Heating Load
- Innovative Well Design
- Integrated with existing HVAC system

100% Geothermal Rule of Thumb

Informed Ground Conditions

Estimated Smart Sizing

Other Goals

- Utilizes "Green" Electricity
- Stretch code
- LEED points
- GHG reduction
- Historic preservation
- Reduce central plant growth
- Emission reductions

Avoid Aesthetic Impacts

Preserve & Create Campus Aesthetic

Take Aways...

- Powerful ECM
- Possible in most locations
- Understand Ground + Building
- *SmartSize* multiple scenarios early
- Lower Life Cycle Cost
- Huge Range of Feasibility

Questions

HALEY& ALDRICH

Kathleen A. Dorsey, P.E. Senior Geothermal Specialist kdorsey@HaleyAldrich.com 216-706-1338 440-821-5907 Cell 7926 Jones Branch Dr. Ste 870 McLean, VA 22102-3363

This concludes The American Institute of Architects Continuing Education Systems Course

Haley & Aldrich, Inc.

Team Composition

Best method to support the client goals

Partner Qualifications: What to look for..

- Geologists and Hydrogeologists
- P. E. certified designs
- Mechanical engineering/modeling experts
- Significant experience on higher ed campuses
- Client value driven philosophy

