

Dr. Glenn Mitchell Oct. 6, 2015

THERMAL MANAGEMENT

Challenges, Requirements and Solutions for the Electronics Industry

Agenda

- Introduction
- Thermal Industry Trends
- TIM Challenges, Needs & Criteria
- TIM Industry Solutions
- Summary
- Questions

Thermal Management Industry Trends

Industry Trend: Power Densities Accelerating

Market Dynamics

- Increasing power consumption for CPU, APU, GPU, and chipsets
- Thermal performance & reliability becoming increasingly important across more applications

© 2015 by Honeywell International Inc. All rights reserved.

VGA Power Consumption

Server and Telecom Heat Load

Rising Power Drives More Emphasis on Reliability

Merchant Silicon Power in Networking Applications

 Power increases more than seven times after the year 2000

 Power cycling trends in networking applications

TIMs – Crucial for Thermal Management

Product Performance

- Increasing power densities
- High density board layout
- Higher Device Temperatures
- Lower Thermal Impedance
- Increased Thermal Stability and Reliability
- Harsher Test Conditions
- Customer Satisfaction
 - Reliable product performance for demanding users
- Result of Incorrect TIM
 - Device failure and performance degradation

iPad 2

new iPad

The new iPad gets up to 13 degrees hotter than the iPad 2 when playing a game.

© 2015 by Honeywell International Inc. All rights reserved.

Real Potential to Impact Customer Satisfaction and Brand

Thermal Management Challenges, Needs & Criteria

Key Thermal Properties of TIM

Bulk Thermal Conductivity (W/mK)

- Material property only
- Does not consider:
 - Interface contact resistance
 - Bond line thickness

- k: thermal conductivity
- Δx : thickness of sample
- ΔT : temperature difference across sample
- A: cross-sectional area of sample

Thermal Impedance (°C.cm2/W)

- Thermal bulk resistance + interface contact resistance
- Bond line thickness

TIM Thermal Impedance:

 $TI_{T} = BLT/K + R_{C}$

- TI_{T} = Total Thermal Impedance
- BLT = Bond Line Thickness of TIM
- K = Bulk Thermal Conductivity of TIM
- R_c = Thermal Contact Resistance at the Interfaces

© 2015 by Honeywell International Inc. All rights reserved.

Thermal Impedance Most Critical to Thermal Dissipation and Performance

TIMs - Thermal Needs and Requirements

1	Thermal Performance	Thermal Conductivity (W/mK) Thermal impedance (TI, °C.cm²/W)	Thermal Bulk Conductivity TTV, Laser Flash ASTM E1461 Cut Bar TI Test ASTM D5470	
2	"Out-of-Box" Performance @ Time 0; Withstand Temp Spikes and Bursts	Thermal impedance (TI, °C.cm²/W)	TTV, Laser Flash ASTM E1461; Cut Bar TI Test ASTM D5470	
3	Longevity	<10% Thermal Degradation over ALT	High Temperature Storage, Temp Cycling; Highly Accelerated Stress Test (HAST) Arrhenius Modeling	
4	Performance Under Harsh Operating Conditions	Test Severity ; temperature, humidity, shock, etc.	High Temperature Storage, Temp Cycling; Highly Accelerated Stress Test (HAST)	
5	Bond Line Thickness	<0.2mm; 0.2mm – 1.0mm; >1.0 mm	BLT Measurement	
6	Compression & form factor	Bond line Compression need	Deflection vs. Pressure	
7	Economics	\$/device	Cost of Ownership Modeling	

Understanding and Prioritizing Needs is Critical to TIM Selection

TIM Industry Solutions

TIM Material Choices

Thermal Grease

- silicone-based, greases are non-curing, conformable
- provide low thermal resistance for applications that do not require long term reliability and thermal shock

Metallic

- all-metal (e.g., solder) or utilize a metal matrix or binder to which metallic or nonmetallic fillers have been added
- good thermal conductivity but normally contact resistance or surface wetting is not good

Thermal Adhesives

- one or two-part crosslinkable materials based on epoxies or silicones
- known for their structural support this can eliminate the need for mechanical clamps, but cure time is required and they are not reworkable

Others

• thermal compound, tapes, films, epoxy, etc.

Gap Pad

- typically thicker (>1mm) than other TIMs and designed to have good compression properties
- however, they usually can not deliver the same level of thermal performance as other TIM materials

Thermal Gel

- normally is one-component, crosslinked or pre-cured gel structure
- good compressibility and dispense process automation

Phase Change Material (PCM)

- transforms from a solid state to a liquid or gel state
- no bleed out, pump out and degradation issues normally found in thermal greases

Greases in Power Cycling Applications

Greases

- Subject to thermal expansion of the heat sink and ASIC lid during power cycling
- Can cause pump out and result in dry-out scenarios of the interface between the heat sink and the chip

Name of Sensor	Grease Application	Phase Change Application
Chip 1	91.0	92.0
Chip 2	92.0	91.2
Chip 3	98.0	97.5
Chip 4	100.0	99.0

© 2015 by Honeywell International Inc. All rights reserved

PCM Can Provide Equal Thermal Performance as Grease w/o Issue

Illustration of Pump Out

Grease pump out and creation of voids

Phase change application forming a continuous interface between heat sink and ASIC lid

Theoretical Curve: PCM Viscosity vs. Temp.

PCM Polymer

- Higher Molecular Weight
 - Structural integrity
- Long Chain Polymer Structure

PCM

VS.

- Long Chain
- Stable and Consistent Filler
- Minimizes Filler Migration / Separation Over Accelerated Life Test (HTB, Temp Cycle)

Grease

- Short Chain
- Good 'Flow-ability', Wetting but...
- Potential for Migration, Dry-Out and Pump-Out Issues

© 2015 by Honeywell International Inc. All rights reserved

PCM Polymer Structure Enables Reliable, Long-Term Performance

PCM Technology

- Fundamentally three primary components in PCM
- Each are vital to robust polymer matrix integrity and filler optimization

• Filler

- Thermal
- Wax/Polymer
 - Structural integrity
- Additives
 - Cross linking

© 2015 by Honeywell International Inc. All rights reserved.

PCM Formulation is Critical to Performance

- -55°Cx10min + 125°Cx10 min, for 500 to 1000 cycles
- Sandwich PCM & grease between aluminum and glass plates set at 200 μm gap
- TI Test : ASTM D5470

© 2015 by Honeywell International Inc. All rights reserved.

PCM Provides Stable Polymer Structure with No Pump-Out Issue

Thermal Reliability: PCM vs. Silicone Greases

Test Method: Laser Flash, ASTM E1461

© 2015 by Honeywell International Inc. All rights reserved.

Significantly Better Reliability Than Silicone Grease

Extended Reliability - PCM

- Thermal Stability >3000 hrs @ 150°C
- HAST > 192hrs@ 130°C/85%RH

HAST TI vs. Time

ASTM E1461

© 2015 by Honeywell International Inc. All rights reserved

Polymer Chemistry Enables Improved Reliability

Improved Thermal Impedance - PCM

- Lower Thermal Impedance: <0.06 °Ccm²/W
- As much as 30% Improvement at 20 um Bond Line
- Wider Process Window for Pre-Load Pressure Range

© 2015 by Honeywell International Inc. All rights reserved.

New PCM Material Demonstrates Lower Thermal Impedance

Thermal Test Vehicle (TTV) Study

CPU device: = 9.25 mm x 8.29 mm GPU device: 12.36 mm x 9.13 mm

High Compressibility – TCM Series

Feature

- Integrates gap pad, putty material and thermal gel
- No rebound, low spring back force
- Performance
 - Lower TI vs. gap pads, putty or gels with better wetting and no bleeding, no pump out
- Reliability
 - Equal to PCM45 and PTM5000
- Form Factor
 - Both Pad and paste available

Compressibility	TCM11	TCM12
30%	10psi	7psi
40%	14psi	8psi
50%	19psi	10psi
70%	49psi	21psi

Physical Property	Unit	TCM11	TCM12	Gap Pad A	Gel B	Putty C
Thermal Conductivity	W/m-K	4.4	3.0	3.0	3.5	3.0
Thermal Impedance	°C-cm²/W @2mil thickness	0.128	0.145	NA	0.393	NA
Thermal Impedance	°C-cm²/W (10psi,1mm thickness)	0.297	NA	4.00	2.09	2.84
Specific Gravity	g/cm³	2.2	2.1	1.34	3.2	1.7
Compressibility	40% deflection (Typical value)	14	8	26	5	5

© 2015 by Honeywell International Inc. All rights reserved.

New TCM Material: High Compressibility & Thermal Performance

Summary

- Increased device power densities challenge the performance and reliability of Thermal Interface Materials
- Application needs and requirements as well as accelerated life tests are critical to TIM selection criteria
- The robust polymer chemistry of Phase Change Materials enables low thermal impedance with proven long term thermal stability and reliability

Questions

