

LIQUID THERMAL INTERFACE MATERIALS

Mark Amberg Moderator Bergquist, a Henkel Company

Efficient Thermal Management

10/12/2015

Thermal Live 2015

Filler in	polymer
-----------	---------

	Thermal Conductivity	
Material	(W/m-K)	
Air	0.025	
Polymers	0.2	
Aluminum oxide	30	
Alumina hydrate	25	
Aluminum nitride	175	
Aluminum	200	
Boron nitride	30-600	
Silicon dioxide	10	
Silicon carbide	100-200	
Graphite	120-165	
Diamond	2000	

THERMAL LIVE

10/12/2015

Liquid Dispense Thermal Interface Materials Benifits of Cure in Place Liquids

• Low Assembly Stress

Conformability

10/12/20

1 5

- Optimized Material Usage
- Logistics Simplification
- Thermal Performance and Cost

Thermal Live 2015

Thermal Conductivity Defined

THERMAL LIVE

10/12/20 Thermal Live 2015

Thermal Conductivity (W/m-K) vs Thermal Resistance (C/W)

Thermal Conductivity = Material Thermal Resistance = Application

	Gap Pad	Liquid TIM
Thermal Conductivity W/m-K	2	1.8
Thermal Resistance °C/W	3.03	2.05

Thermal Live 2015

Thermal Resistance Mapping TO-220 Testing

Thermal Impedance per Bergquist RD Test Thermal Performance (25°C Cold Plate Testing)

The thermal performance of an assembly measure by the ratio of the temperature difference between two surfaces to that of steady state heat flow through them.

Typically units (°C/ Watt) include interfacial Resistances

THERMAL LIV

10/12/20 Thermal Live 2015

Reliability

Dielectric Breakdown (V/mil) / Time Aged (Hours)

1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 250 750 500 1000 -GF1500 -50°C to 150°C -----GF1500 150°C

Thermal Performance (°C/W) / Time Aged (Hours)

201

10/12/2015

Viscosity Self Leveling to Slump Resistant

10/12/2015

Rheology & Measure of Viscosity Three Distinct Rheology Zones

Liquid Dispense Alliances Equipment Manufacturers

15

Liquid Dispense Thermal Interface Materials

Quality

- Manually placed pads risk failures human factor
 - Risk enhanced with multiple pads in one module
- Liquid dispense utilizes automated equipment
 - Slump resistant materials = repeatable bead
 - Cameras to quality check the dispense pattern

HERMAL LIVE 🗄

Liquid Dispense Thermal Interface Materials

Air Entrapment

10/12/20 Thermal Live 2015

10/12/2015

Thermal Live 2015

10/12/2015

THERMAL LIVE 8

Thanks for attending!

Don't miss Thermal Live 2016! Fall 2016 www.thermallive2016.com